Solar activity is usually caused by the evolution of solar magnetic fields. Magnetic field parameters derived from photospheric vector magnetograms of solar active regions have been used to analyze and forecast eruptive events such as solar flares and coronal mass ejections. Unfortunately, the most recent solar cycle 24 was relatively weak with few large flares, though it is the only solar cycle in which consistent time-sequence vector magnetograms have been available through the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) since its launch in 2010. In this paper, we look into another major instrument, namely the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) from 1996 to 2010. The data archive of SOHO/MDI covers more active solar cycle 23 with many large flares. However, SOHO/MDI data only has line-of-sight (LOS) magnetograms. We propose a new deep learning method, named MagNet, to learn from combined LOS magnetograms, Bx and By taken by SDO/HMI along with H-alpha observations collected by the Big Bear Solar Observatory (BBSO), and to generate vector components Bx' and By', which would form vector magnetograms with observed LOS data. In this way, we can expand the availability of vector magnetograms to the period from 1996 to present. Experimental results demonstrate the good performance of the proposed method. To our knowledge, this is the first time that deep learning has been used to generate photospheric vector magnetograms of solar active regions for SOHO/MDI using SDO/HMI and H-alpha data.
translated by 谷歌翻译
RNA结构的确定和预测可以促进靶向RNA的药物开发和可用的共性元素设计。但是,由于RNA的固有结构灵活性,所有三种主流结构测定方法(X射线晶体学,NMR和Cryo-EM)在解决RNA结构时会遇到挑战,这导致已解决的RNA结构的稀缺性。计算预测方法作为实验技术的补充。但是,\ textit {de从头}的方法都不基于深度学习,因为可用的结构太少。取而代之的是,他们中的大多数采用了耗时的采样策略,而且它们的性能似乎达到了高原。在这项工作中,我们开发了第一种端到端的深度学习方法E2FOLD-3D,以准确执行\ textit {de de novo} RNA结构预测。提出了几个新的组件来克服数据稀缺性,例如完全不同的端到端管道,二级结构辅助自我鉴定和参数有效的骨干配方。此类设计在独立的,非重叠的RNA拼图测试数据集上进行了验证,并达到平均sub-4 \ aa {}根平方偏差,与最先进的方法相比,它表现出了优越的性能。有趣的是,它在预测RNA复杂结构时也可以取得令人鼓舞的结果,这是先前系统无法完成的壮举。当E2FOLD-3D与实验技术耦合时,RNA结构预测场可以大大提高。
translated by 谷歌翻译
通过强迫连续重量的最多n非零,最近的N:M网络稀疏性因其两个有吸引力的优势而受到越来越多的关注:1)高稀疏性的有希望的表现。 2)对NVIDIA A100 GPU的显着加速。最近的研究需要昂贵的训练阶段或重型梯度计算。在本文中,我们表明N:M学习可以自然地将其描述为一个组合问题,该问题可以在有限的集合中寻找最佳组合候选者。由这种特征激励,我们以有效的分裂方式解决了n:m的稀疏性。首先,我们将重量向量分为$ c _ {\ text {m}}}^{\ text {n}} $组合s子集的固定大小N。然后,我们通过分配每个组合来征服组合问题,一个可学习的分数是共同优化了其关联权重。我们证明,引入的评分机制可以很好地模拟组合子集之间的相对重要性。通过逐渐去除低得分的子集,可以在正常训练阶段有效地优化N:M细粒稀疏性。全面的实验表明,我们的学习最佳组合(LBC)的表现始终如一,始终如一地比现成的N:m稀疏方法更好。我们的代码在\ url {https://github.com/zyxxmu/lbc}上发布。
translated by 谷歌翻译
在计算机视觉,图像处理和计算机图形学中,图像平滑过滤是一个非常基本和重要的任务,并预期拥有良好的边缘保留平滑性。在这里,我们解决了需要改进许多流行的局部平滑滤波器的边缘保存能力的问题。在本文中,我们提出了图像边缘恢复滤波器(ERF)以恢复局部平滑滤波器的输出中的模糊边缘像素清晰。可以在许多局部平滑滤波器(例如盒式滤波器,高斯滤波器,双边滤波器,引导过滤器等)之后实现所提出的滤波器。 “原始局部平滑滤光片+ ERF”的组合具有比原始局部平滑滤波器更好的边缘保持平滑性。图像平滑的实验,图像去噪和图像增强展示了所提出的滤波器的优异边缘恢复能力,以及“原始局部平滑滤光片+ ERF”的组合的良好边缘平滑性。拟议的滤波器将有益于各种各样的应用,鉴于平滑过滤是高频繁使用和基本操作的影响。
translated by 谷歌翻译
虽然RGB-Infrared跨型号人重新识别(RGB-IR Reid)在24小时智能监测中启用了巨大进展,但最先进的仍然严重依赖于微调想象的预先训练的网络。由于单模性质,这种大规模的预训练可以产生逆向模态图像检索性能的RGB偏置的表示。本文介绍了一个自我监督的预训练替代品,命名为模态感知多个粒度学习(MMGL),该学习(MMGL)直接从划痕上培训模型,而是在没有外部数据和复杂的调整技巧的情况下实现竞争结果。具体而言,MMGL将RGB-IR图像映射到共享潜在置换空间中,通过最大化循环 - 一致的RGB-IR图像补片之间的协议,进一步提高了局部辨别性。实验表明,MMGL在更快的训练速度(几小时内收敛)和求解数据效率(<5%数据大小)比想象预先训练更好地了解更好的表示(+ 6.47%的秩1)。结果还表明它概括为各种现有模型,损失,并且在数据集中具有有希望的可转换性。代码将被释放。
translated by 谷歌翻译
Muilti-Delicality数据在生物学中普遍存在,特别是我们进入了多OMICS时代,当我们可以测量来自不同方面(OMIC)的相同生物对象(单元)来提供更全面的洞察蜂窝系统。在处理此类多个OMICS数据时,第一步是确定不同模式之间的对应关系。换句话说,我们应该与与相同对象相对应的不同空格匹配数据。这个问题在单细胞多OMICS场景中特别具有挑战性,因为这种数据具有极高的尺寸。其次,匹配的单细胞多OMICS数据是罕见的且难以收集的。此外,由于实验环境的局限性,数据通常非常嘈杂。为了促进单细胞多OMICS研究,我们克服了上述挑战,提出了一种新颖的框架来对齐和集成单细胞RNA-SEQ数据和单细胞ATAC-SEQ数据。我们的方法可以通过在统一空间中有效地将上述数据与来自不同空间的高稀疏性和噪声从不同空间的噪声映射到低维歧管,使下游对准和直接集成。与其他最先进的方法相比,我们的方法在模拟和实际单细胞数据中执行更好。所提出的方法有助于单细胞多OMICS研究。对模拟数据集成的改进是显着的。
translated by 谷歌翻译
鉴定抗微生物肽的靶标是研究先天免疫反应和打击抗生素抗性的基本步骤,更广泛,精确的药物和公共卫生。关于鉴定(I)肽是抗微生物肽(AMP)的统计和计算方法是否有广泛的研究,或者是哪种靶向这些序列(克阳性,革兰氏阴性)的靶序列, 等等。)。尽管存在对此问题的深度学习方法,但大多数都无法处理小型AMP类(抗昆虫,抗寄生虫等)。更重要的是,一些AMP可以有多个目标,前面的方法无法考虑。在这项研究中,我们通过从各种AMP数据库收集和清洁氨基酸来构建多样化和综合的多标签蛋白序列数据库。为了为小类数据集产生有效的表示和特征,我们利用培训的蛋白质语言模型,培训了超过2.5亿蛋白序列。基于此,我们开发了一个端到端的分层多标签深森林框架,HMD-AMP,全面注释放大器。在识别AMP之后,它进一步预测了AMP可以从11个可用类中有效杀死的目标。广泛的实验表明,我们的框架在二进制分类任务和多标签分类任务中占据了最先进的模型,尤其是在次要类上。模型对抗特征和小扰动并产生有前途的结果。我们认为HMD-AMP对不同抗微生物肽的未来湿式实验室调查有助于不同抗菌肽的先天结构性质,并为抗生素进行精确药物构建有前途的实证内衬。
translated by 谷歌翻译
本文介绍了语音(TTS)系统的Microsoft端到端神经文本:暴风雪挑战2021。这一挑战的目标是从文本中综合自然和高质量的演讲,并在两个观点中接近这一目标:首先是直接模型,并在48 kHz采样率下产生波形,这比以前具有16 kHz或24 kHz采样率的先前系统带来更高的感知质量;第二个是通过系统设计来模拟语音中的变化信息,从而提高了韵律和自然。具体而言,对于48 kHz建模,我们预测声学模型中的16 kHz熔点 - 谱图,并提出称为HIFINET的声码器直接从预测的16kHz MEL谱图中产生48kHz波形,这可以更好地促进培训效率,建模稳定性和语音。质量。我们从显式(扬声器ID,语言ID,音高和持续时间)和隐式(话语级和音素级韵律)视角系统地模拟变化信息:1)对于扬声器和语言ID,我们在培训和推理中使用查找嵌入; 2)对于音高和持续时间,我们在训练中提取来自成对的文本语音数据的值,并使用两个预测器来预测推理中的值; 3)对于话语级和音素级韵律,我们使用两个参考编码器来提取训练中的值,并使用两个单独的预测器来预测推理中的值。此外,我们介绍了一个改进的符合子块,以更好地模拟声学模型中的本地和全局依赖性。对于任务SH1,DelightFultts在MOS测试中获得4.17均匀分数,4.35在SMOS测试中,表明我们所提出的系统的有效性
translated by 谷歌翻译
CutMix is a vital augmentation strategy that determines the performance and generalization ability of vision transformers (ViTs). However, the inconsistency between the mixed images and the corresponding labels harms its efficacy. Existing CutMix variants tackle this problem by generating more consistent mixed images or more precise mixed labels, but inevitably introduce heavy training overhead or require extra information, undermining ease of use. To this end, we propose an efficient and effective Self-Motivated image Mixing method (SMMix), which motivates both image and label enhancement by the model under training itself. Specifically, we propose a max-min attention region mixing approach that enriches the attention-focused objects in the mixed images. Then, we introduce a fine-grained label assignment technique that co-trains the output tokens of mixed images with fine-grained supervision. Moreover, we devise a novel feature consistency constraint to align features from mixed and unmixed images. Due to the subtle designs of the self-motivated paradigm, our SMMix is significant in its smaller training overhead and better performance than other CutMix variants. In particular, SMMix improves the accuracy of DeiT-T/S, CaiT-XXS-24/36, and PVT-T/S/M/L by more than +1% on ImageNet-1k. The generalization capability of our method is also demonstrated on downstream tasks and out-of-distribution datasets. Code of this project is available at https://github.com/ChenMnZ/SMMix.
translated by 谷歌翻译
As a neural network compression technique, post-training quantization (PTQ) transforms a pre-trained model into a quantized model using a lower-precision data type. However, the prediction accuracy will decrease because of the quantization noise, especially in extremely low-bit settings. How to determine the appropriate quantization parameters (e.g., scaling factors and rounding of weights) is the main problem facing now. Many existing methods determine the quantization parameters by minimizing the distance between features before and after quantization. Using this distance as the metric to optimize the quantization parameters only considers local information. We analyze the problem of minimizing local metrics and indicate that it would not result in optimal quantization parameters. Furthermore, the quantized model suffers from overfitting due to the small number of calibration samples in PTQ. In this paper, we propose PD-Quant to solve the problems. PD-Quant uses the information of differences between network prediction before and after quantization to determine the quantization parameters. To mitigate the overfitting problem, PD-Quant adjusts the distribution of activations in PTQ. Experiments show that PD-Quant leads to better quantization parameters and improves the prediction accuracy of quantized models, especially in low-bit settings. For example, PD-Quant pushes the accuracy of ResNet-18 up to 53.08% and RegNetX-600MF up to 40.92% in weight 2-bit activation 2-bit. The code will be released at https://github.com/hustvl/PD-Quant.
translated by 谷歌翻译